

295608

ENGINEERING DESIGN CALCULATION

PROJECT	<u> IDENTIFICATION</u>			
Client:	RRG Clayton Chemical	_	0042	192-95
Project:	Capping	Location:	Saug	get, Illinois
CALCUL	ATION IDENTIFICATION			
Calculation	on Ref. No.:	No. Pages:	12 ation cov	er sheet)
Calculation	on Description: CAP DRAINAGE	I AVED HVI	DDAII	TICE
	CAI DRAINAGE	LAILK IIII	JKAU	LICS
Design:	A.Wesolowski		Date:	Oct10/06
Checked:	R.Hoekstra		Date:	

RECORD OF REVISION

Revision	Revision				Project	
No.	Date	Design	Checked	Supervised	Control	Detail of Revision
0						Original (per above)

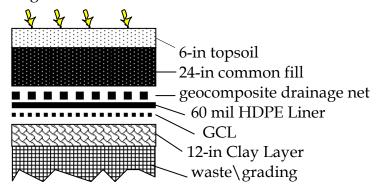
PROJECT NO:042192-95

DESIGNED BY: A.W.

PROJECT NAME: Capping

CHECKED BY: R.H

DATE: Oct 10/06


PAGE 2 OF 12

CAP DRAINAGE LAYER HYDRAULICS

1. GEOCOMPOSITE DRAINAGE NET HYDRAULICS

1.1 Data input

-cap design:

- soil layer common fill permeability: k = 0.00001 cm/s $(1 \times 10^{-7} \text{ m/s})$
- Slope gradient and length for selected critical paths:
 - a) 5 % approx. 100 ft = 30 m
- optional 0.30 m thick sand drainage layer, typical permeability Ks = 0.03 cm/s = 0.0003 m/s
- reduction factors for drainage composite

for intrusion $RF_{in} = 1.5$

for creep $RF_{cr} = 1.4$

for chemical clogging $RF_{cc} = 1.2$

for biological clogging RF_{bc} = 1.6

overall FS = 2

Total Fs = 8

- criteria for Lateral Drainage for Final Cover Side Slope, Landfill Drainage System www.landfilldesign.com Unit Gradient Method (see attached).

PROJECT NO: 042192-95 DESIGNED BY: A.W.

PROJECT NAME: Capping CHECKED BY: R.H.

DATE: Oct10/06 PAGE 3 OF 12

1.2 Required transmissivity of the geocomposite Yult

Required (ultimate) geocomposite transmissivities for selected paths, (length, permeability and slope) have been calculated utilizing software program, Unit Gradient Method, (see attached).

a) Y ult = $0.00048 \text{ m}^2/\text{s}$ for 5% slope

PROJECT NO: 042192-95 DESIGNED BY: A.W.

PROJECT NAME: Capping CHECKED BY: R.H.

DATE: Oct10/06 PAGE 4 OF 12

1.3 Available transmissivity of the geocomposite Y_{avail}

Available transmissivities for GSE Fabrinet 250 mil geocomposite product, according to attached manufacturer chart, Fig.A-6 for given (design) gradients and normal pressure of approximately 1000 psf at given cap design configuration.

a) Yavail = $0.001 \text{ m}^2/\text{s}$ for 5% slope

1.4 Infiltration into sand drainage layer

Calculated infiltration flow, based on unit length along the slope Ls, given soil cover permeability Kcover and vertical seepage gradient = 1.

Qinfil = Ls x Kcover x 1 (m3/s per m width, per linear m)

Qinfil = $30m \times 0.0000001 \text{ m/s} \times 1 = 0.000003 \text{ m}3/\text{s}$

1.5. Available sand drainage layer hydraulic capacity Qavail

Calculated available sand drainage layer hydraulic capacity, based on sand drainage layer permeability Ksand, vertical gradient slope i, and drainage layer cross-sectional area A.

Qsand = Ksand x i x A (m3/s per m width)

Qsand = 0.0003m/s x 0.05 x (0.3 m x 1 m) = 0.0000045 m3/s

PROJECT NO: 042192-95 DESIGNED BY: A.W.

PROJECT NAME: Capping CHECKED BY: R.H.

DATE: Oct 10/06 PAGE 5 OF 12

1.6 Conclusion

a) Geocomposite drainage layer:

According to the results as shown in 1.2 and in 1.3, available transmissivities of GSE product are fully satisfactory, and no lateral drains are required. Flow generated from the cap infiltration will be fully contained within the drainage layer, providing that the cover soil has a permeability of 1×10^{-5} cm sec or less.

Y avail = $0.001 \text{ m}^2/\text{s}$ > Y ult = $0.00048 \text{ m}^2/\text{s}$ for 5% slope

Factor of safety, Fs = Yavail/Yult = 0.001/0.00048 = 2.08

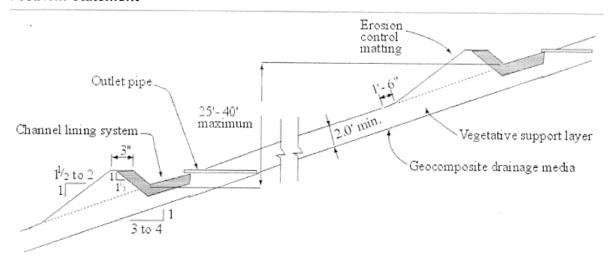
(including previously applied factors for clogging as in part 1.1 on page 2)

b) Optional sand drainage layer:

According to the results as shown in part 1.4 and in 1.5, no lateral/relief drain will be required.

Flow generated from the cap infiltration will be fully contained within 0.3 m of the sand drainage layer, providing that the cover soil material and sand material will have permeability as assumed.

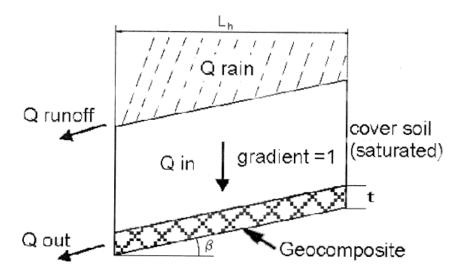
However factor of safety is only:


Fs = Qsand/ Qinfilt = 0.0000045 / 0.0000030 = 1.5 (not inculing consideration for clogging)

go to problem statement input values solution material selection contact help references

landfilldesign.com

Unit Gradient Method - Design Calculator


Problem Statement

The transmissivity of a drainage geocomposite must be great enough to carry all of the infiltrating flow from the soil layer(s) above. If the drainage geocomposite can not carry all the infiltrating water (very long slope, or very permeable cover soil,...); swales can be placed as shown in the above figure. The three conditions for stability are:

- 1. The interface shear strength of all interfaces is adequate
- Pore water pressures do not build up and reduce the contact stress between the geomembrane and the soil. The <u>Seepage Force Stability Calculator</u> can be used to determine the factor of safety of a landfill cover with consideration of seepage forces
- 3. Landfill gas pressures beneath the liner are vented properly. The <u>Landfill Gas Pressure Relief Calculator</u> can be used to determine the gas transmissivity of the relief layer. The <u>Landfill Gas Stability Calculator</u> can be used to verify the factor of safety of a landfill cover subject to landfill gas pressure underneath a geomembrane liner.

This webpage determines the ultimate transmissivity sufficient to transmit all incoming flow within the thickness of the geocomposite; i.e. maximum head < geonet thickness; therefore seepage forces in the cover soil will be zero.

With Darcy's law:

$$Q = k * i * A$$

Inflow of water in the geocomposite

$$Q_{in} = k_{veg} * i * A = k_{veg} * 1 * L_k * 1$$

Outflow of water from the geocomposite at the toe of the slope

$$Q_{out} = k_{comp} * i * A = k_{comp} * i * t * 1 = \theta_{required} * \sin \beta$$

Inflow equals outflow (Factor of Safety = 1)

$$Q_{in} = Q_{out}$$

This results in a required transmissivity of the geocomposite of:

$$\theta_{required} = \frac{k_{veg} * L_k}{\sin \beta}$$

Which results in the ultimate transmissivity after multiplying by the Total Serviceability Factor (TSF)

$$\theta_{ukimate} = \theta_{required} * FS_d * RF_{in} * RF_{cr} * RF_{cc} * RF_{bc}$$

Required Data

Symbol	Name	Dimensions
L _h	Drainage pipe spacing or length of slope measured horizontally	Length
k _{veg}	Permeability of the vegetative supporting soil	Length/Time
S	The liner's slope, S = tan b	-
FS _{slope}	Minimum factor of safety against sliding, for soil/geocomposite or geocomposite/geomembrane interfaces	-

FS _d	Overall factor of safety for drainage
RF_in	Intrusion Reduction Factor
RF _{cr}	Creep Reduction Factor
	Chemical Clogging Reduction Factor
	Biological Clogging Reduction Factor

Input Values

Note: If you do not wish to perform calculations for 3 cases, please leave default data as is.

	Case 1		Case 2		Case 3	
S	5	%	5	%	5	%
L _h	30	m	30	m	30	m
\mathbf{k}_{veg}	0.00001	cm/sec	0.00001	cm/sec	0.00001	cm/sec
FS _{slope}	1.5		1.5		1.5	

Reduction Factors and Safety Factor

	Case 1	Case 2	Case 3	Surface Water Drains
RF_in	1.5	1.5	1.5	[1] 1.0 - 1.2
RF _{cr}	1.4	1.4	1.4	[2] Calculate RF _{CR}
RF_cc	1.2	1.2	1.2	[3] 1.0 - 1.2
RF_bc	1.6	1.6	1.6	[3] 1.2 - 3.5
FS_d	2	2	2	[4] 2.0 - 10.0

Calculate Transmissivity

- [1] Intrusion reduction factor from 100 hour to design life. Giroud et. al (2000)
- [2] Creep reduction factor from 100 hour to design life (for instance, 30 years). RF_{CR} is determined from 10,000 hour compressive creep test,

extrapolated to design life, GRI-GC8 (2001). ${\rm RF}_{\rm CR}$ is product and normal load specific.

- [3] GRI-GC8
- [4] FS value = 2-3. Giroud, et. al (2000)
- FS value > 10 for filtration and drainage. Koerner (2001)

 [5] Note: The calculated transmissivity is corresponding to the case where the seating time is 100 hours and the boundary conditions due to adjacent materials are simulated in the hydraulic transmissivity test.

Solution

		Dimensions
gradient	Gradient	
θ _{ultimate}	Ultimate Transmissivity	Length ² /Time
δ _{req'd}	Minimum interface friction angle	degrees

	Case 1		Case 2		Case 3	
gradient	0.05		0.05		0.05	
θ _{ultimate}	4.84E-004	m²/s	4.84E-004	m²/s	4.84E-004	m²/s
δ _{req'd}	4.29	degrees	4.29	degrees	4.29	degrees

Material Selection

Follow the GFR link to view our extensive database of geosynthetic materials reprinted with permission of IFAI

Additional Assistance

If you would like to have Advanced Geotech Systems provide material specifications that meet your performance criteria, please fill in the following fields and click the submit button. All information is kept strictly confidential.

Name *	Comments	
Company		
Email Address *		
Phone		
Project Reference		

*required fields

Submit Design Results

Sponsored by

The following companies can service any of your geosynthetic drainage material selection needs.

References

"GRI-GC8, Determination of the Allowable Flow Rate of a Drainage Geocomposite". Geosynthetics Research Institute, 2001.

"Beyond a factor-of-safety value, i.e., the probability of failure". GRI Newsletter/Report, Vol. 15, no. 3.

"Designing with Geosynthetics". R.M. Koerner, Prentice Hall Publishing Co., Englewood Cliffs, NJ, 1998.

"Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers". J. P. Giroud, J. G. Zornberg and A. Zhao, Geosynthetics International, Vol. 7, Nos 4-5.

"Lateral Drainage Design update - part 2". **G. N. Richardson**, J.P. Giroud and **A. Zhao**, *Geotechnical Fabrics Report*, March, 2002

Copyright 2001 Advanced Geotech Systems. All rights reserved.

GSE STANDARD PRODUCTS

GSE FabriNet HF

250 mil GSE FabriNet HF geocomposites typically consist of a 250 mil GSE HyperNet core with a nonwoven geotextile fabric heat-bonded to one or both sides. The geotextile serves as a filter to protect the geonet core from clogging while the geonet provides a path for the fluids (liquids and gases). The 250 mil GSE HyperNet core is manufactured in the same manner as standard GSE HyperNet but is designed to handle higher flow requirements, as well normal loads, such as those expected in landfill expansions.

Product Specifications

TESTED PROPERTY	TEST METHOD	FREQUENCY	MINIMUM	M AVERAG	E VALUE ^(d)
Geocomposite			6 oz/yd²	8 oz/yd²	10 oz/yd²
Product Code:			F52060060S	F52080080S	F52100100S
Transmissivity [∞] , m²/sec	ASTM D 4716-00	1/540,000 ft ²	5x10⁴	5x10⁴	5x10⁴
Ply Adhesion, Ib/in average	GRI GC-7	1/50,000 ft ²	1.0	1.0	1.0
Roll Width, ft (m)			14.5 (4.4)	14.5 (4.4)	14.5 (4.4)
Roll Length, ft (m)			230 (70.1)	190 (57.9)	180 (54.9)
Roll Area, ft² (m²)			3,335 (310)	2,755 (256)	2,610 (242)
Geonet core ^(b)					
Transmissivity [∞] , m²/sec	ASTM D 4716-00		3x10 ⁻³	3x10 ⁻³	3x10 ⁻³
Thickness, mil (mm)	ASTM D 5199	1/50,000 ft ²	250 (6.3)	250 (6.3)	250 (6.3)
Density, g/cm³	ASTM D 1505	1/50,000 ft ²	0.94	0.94	0.94
Tensile Strength (MD), Ib/in (N/mm)	ASTM D 5035	1/50,000 ft²	55 (9.6)	55 (9.6)	55 (9.6)
Carbon Black Content, %	ASTM D 1603	1/50,000 ft ²	2.0	2.0	2.0
Geotextile (prior to laminat	ion) ^(b,c)				
Mass per Unit Area, oz/yd² (g/m²)	ASTM D 5261	1/90,000 ft²	6 (200)	8 (270)	10 (335)
Grab Tensile, Ib (N)	ASTM D 4632	1/90,000 ft ²	170 (755)	220 (975)	260 (1,155)
Puncture Strength, Ib (N)	ASTM D 4833	1/90,000 ft ²	90 (395)	120 (525)	165 (725)
AOS, US Sieve (mm)	ASTM D 4751	1/540,000 ft ²	70 (0.212)	80 (0.180)	100 (0.150)
Flow Rate, gpm/ft (l/min/m²)	ASTM D 4491	1/540,000 ft ²	110 (4,480)	110 (4,480)	85 (3,460)
UV Resistance, % Retained	ASTM D 4355 (after 500 hours)	once per formulation	70	70	70

NOTES:

- ^(a)Gradient of 0.1, normal load of 10,000 psf, water at 70° F between stainless steel plates for 15 minutes.
- [b] Component properties prior to lamination.
- [c] Several geotextiles are available and may be supplied as determined by GSE.
- Id)These are MARV values and are based on the cumulative results of specimens tested and as determined by GSE.

DS043 R10/22/02

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Please check with GSE for current, standard minimum quality assurance procedures and specifications.

GSE and other marks used in this document are trademarks and service marks of GSE Lining Technology, Inc; certain of which are registered in the U.S.A. and other countries

Americas Europe/Middle East/Africa Asia/Pacific GSE Lining Technology, Inc. GSE Lining Technology GmbH GSE Lining Technology Company Ltd. Houston, Texas Hamburg, Germany Bangkok, Thailand 800-435-2008

281-443-8564 49-40-767420 66-2-937-0091 Fax: 281-230-8650 Fax: 49-40-7674233 Fax: 66-2-937-0097

250 mil Double-sided Composite with 6 or 8 oz. Geotextile Boundary Conditions = Soil/Geocomposite/Geomembrane 1.0E-02 Test Time = 100 hours 1,000 psf 10,000 psf 15,000 psf 1.0E-05 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gradient

Figure A-6 100-hour transmissivity of a 250 mil biplanar geonet under soil/geocomposite/geomembrane boundary conditions.